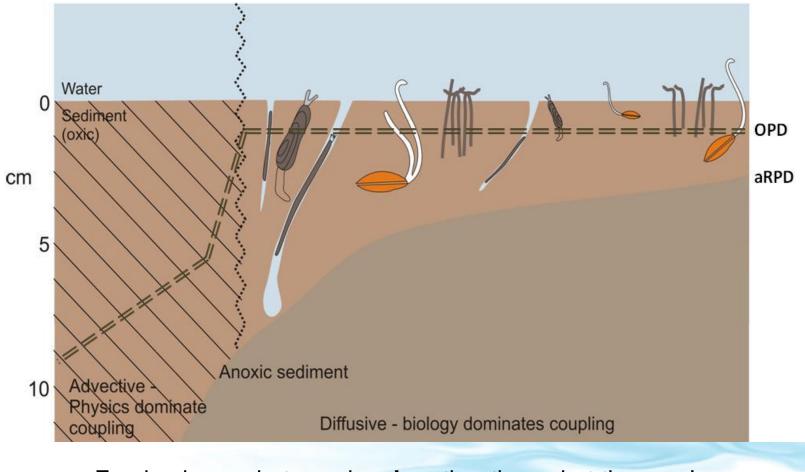


Determining the impacts of trawling on benthic function in European waters: a biological traits approach

Stefan Bolam, <u>Andrew Kenny</u>, Clement Garcia, Jacqueline Eggleton, Grete E. Dinesen, Lene Buhl-Mortensen, Chris Smith, Vicky Kalogeropoulou, Aysun Gumus, Jan Gert Hiddink, Gert Van Hoey, Tobias Kooten, Jorgen Hansen



Contents

- 1. Why use biological traits?
- 2. Data and methods
- 3. Results
- 4. Conclusions
- 5. Refinements!

Why use traits?

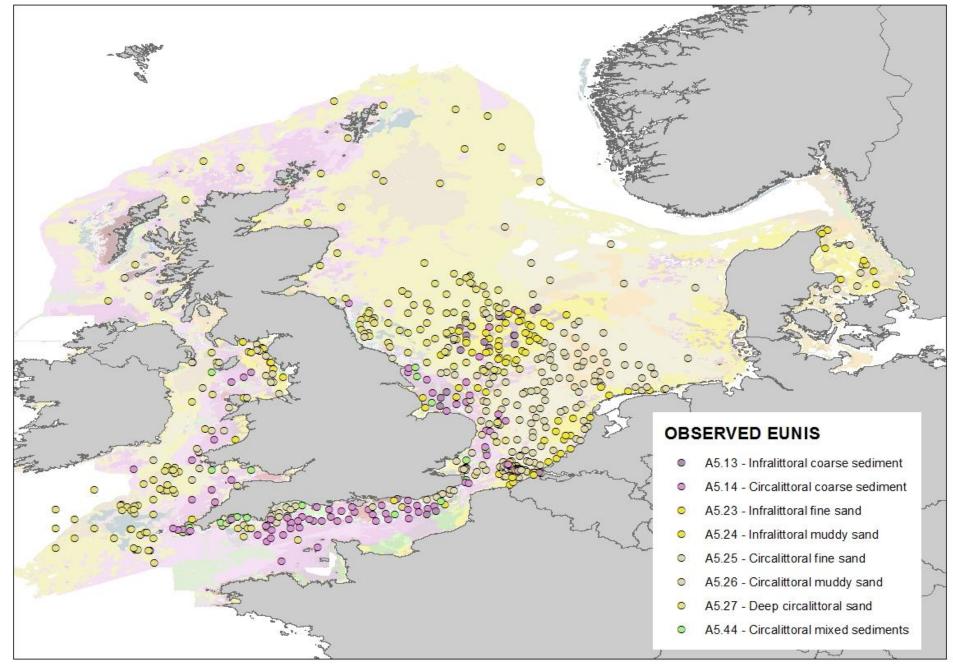
Interactions between habitat and the biota.... structure and function attributes

Emphasis on what species **do** rather than what they **are**! **TRAITS**

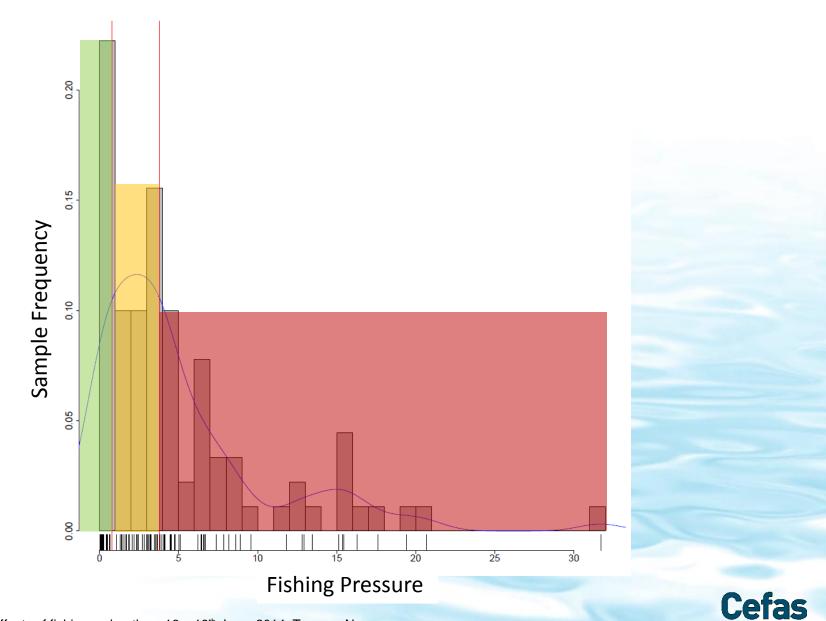
Cefas

Why use traits?

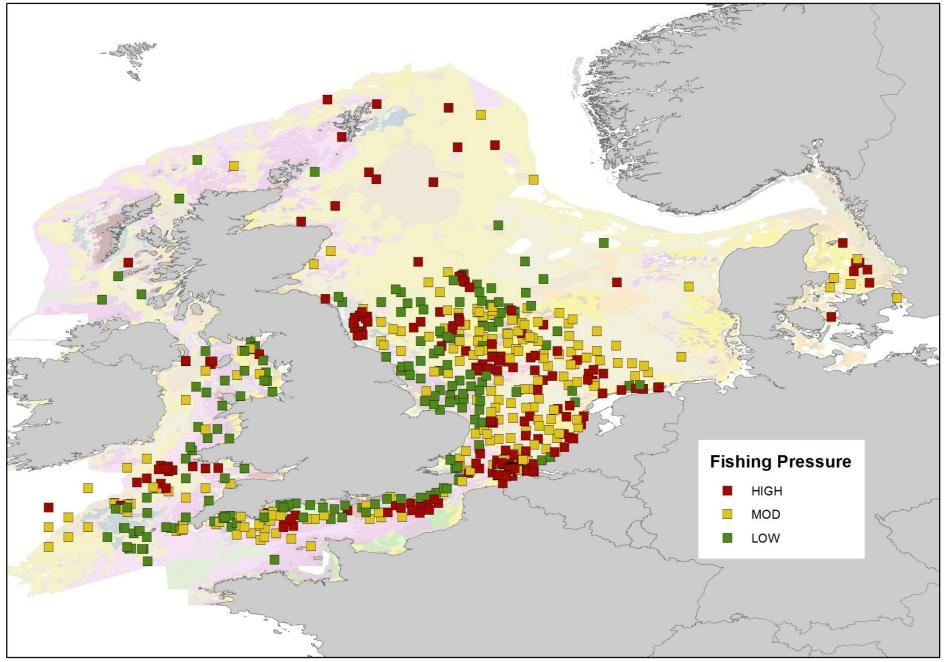
Traits	Processes	Functions	Goods and services		
		Regulation functions			
Sessile infauna –	Bioturbation	Nutrient fluxes.	Maintenance of primary		
conveyor belt		Carbon storage.	production.		
deposit feeder			Climate regulation.		
Sessile epifauna –	Benthic-pelagic	Nutrient and carbon	Water purification.		
filter feeder	coupling	fluxes			
│ Traits → P	rocesses —>	Functions	bod & Services		
		Habitat functions			
Sessile epifauna	Production of	Nursery & refugia	Recruitment and survival of		
'reef' building	biogenic structures	function for other species	commercially important		
suspension feeder			species		
			Presence of high		
			biodiversity areas		
		Production functions			
Soft body epifauna	Prey for higher	Secondary production of	Fish catches		
etc.	trophic predators	invertebrates and fish			

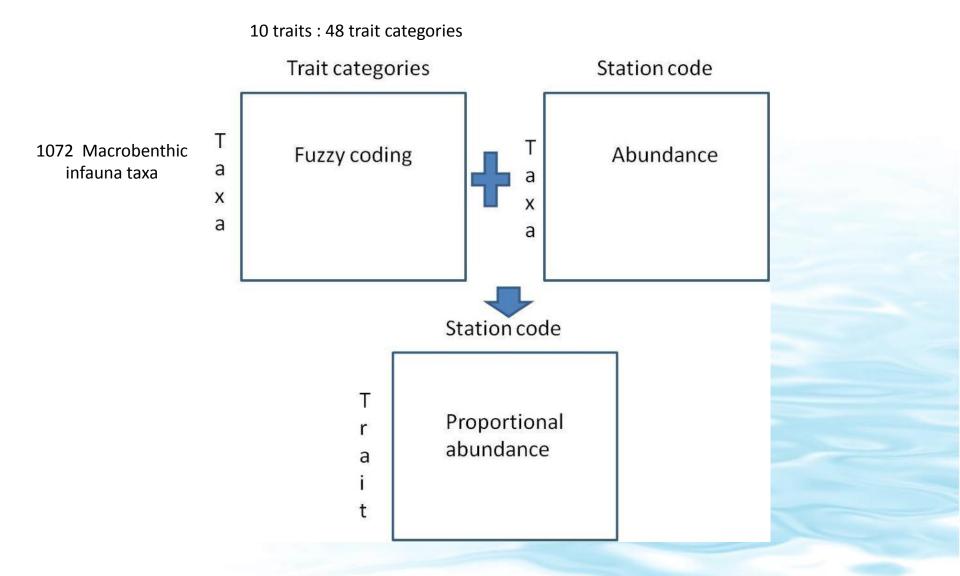

Cefas

The relative importance of traits, processes and functions will vary between different habitat types.

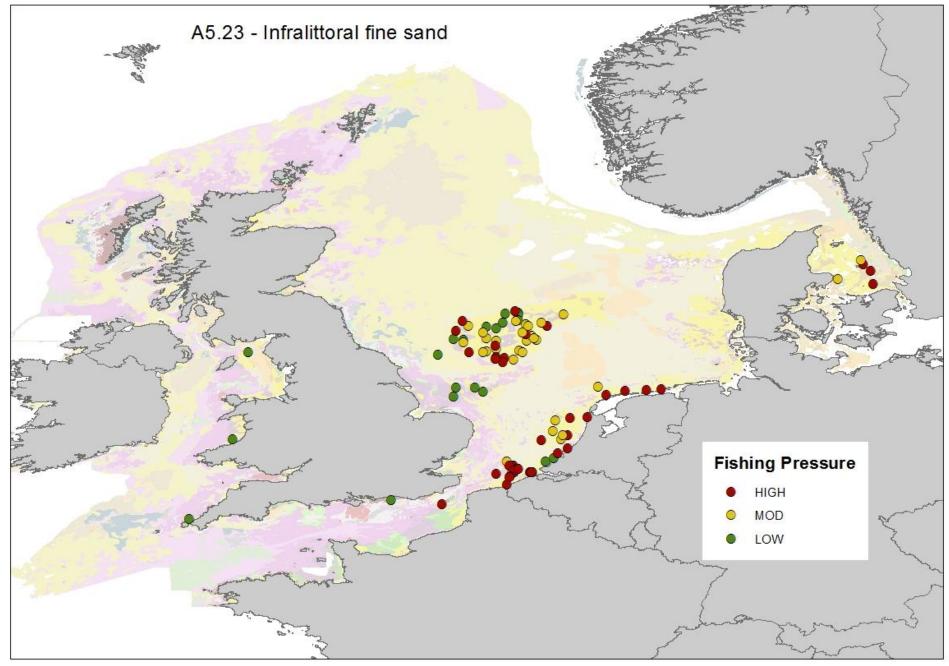

	Maximum size
	Morphology
	Maximum longevity
Deliverable 1.1	Larval dev.
Report on benthic ecosystem processes and the impact of fishing gear	Egg dev.
Due date of deliverable: month 9 (June 2013) Actual submission date: month 15 (December 2013)	Living habit
Coördinator: Adriaa Rijndorp Stichting Dienst Landbouwkundig Onderzoek (Partner 1, IMARES, NL)	Sediment position
Grant Agreement number: 312088 Project acronym: BENTHIS Project title: Benthic Ecosystem Fisheries Impact Study Funding Scheme: Collaborative project Project coordination: IMARES, Umuiden, the Netherlands Project website: www.benthis.eu	Feeding mode
	Mobility
/www.benthis.eu/en/benthis/Results.htm	Bioturbation

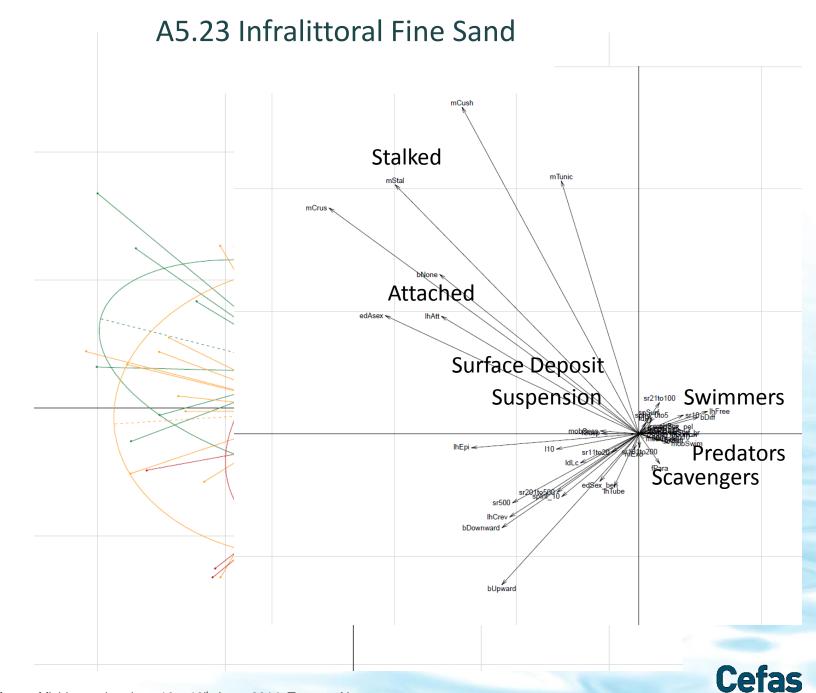
t	Category (example)
	<10mm
ximum size	10-20mm
	21-100mm
	101-200mm
	>201mm
rnhology	Soft
rphology	Tunic
	Exoskeleton
	Crustose
	Cushion
	Stalked
ximum	<1 year
_	1-3 years
gevity	3-10 years
	>10 years
val dev.	Pelagic Planktotrophic
	Pelagic Lecithotrophic
	Benthic (direct)
a dov	Asexual / budding
g dev.	Sexual – shed eggs (pelagic)
	Sexual – shed eggs (benthic)
	Sexual – brood eggs
ing habit	Tube-dwelling
ing nabit	Burrow-dwelling
	Free-living
	Crevice/hole/under stones
	Epi/endo zoic/phytic
	Attached to substratum
diment	Surface
	Shallow infauna
sition	(0-5cm)
	Mid-depth infauna (5-10cm depth)
	Deep-infauna (>10cm)
eding mode	Suspension
sung mode	Surface deposit
	Sub-surface deposit
	Scavenger / opportunist
	Predator
	Parasite
bility	Sessile
onity	Swim
	Crawl/creep/climb
	Burrowers
oturbation	Diffusive mixing
	Surface deposition
	Upward conveyor
	Downward conveyor None
	NOTE

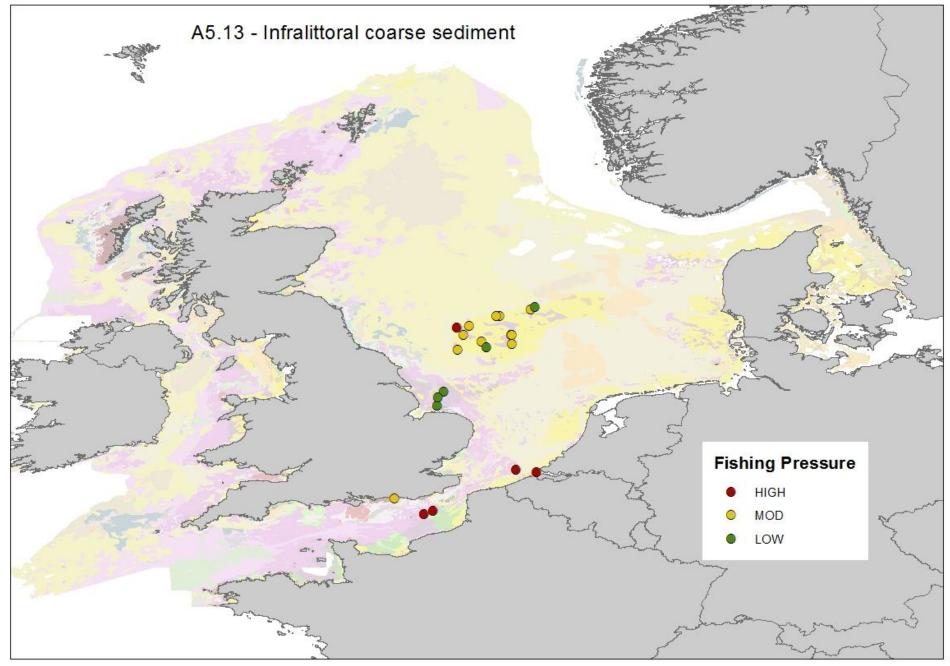

Benthic Grab Samples (610)


Fishing Pressure Categories

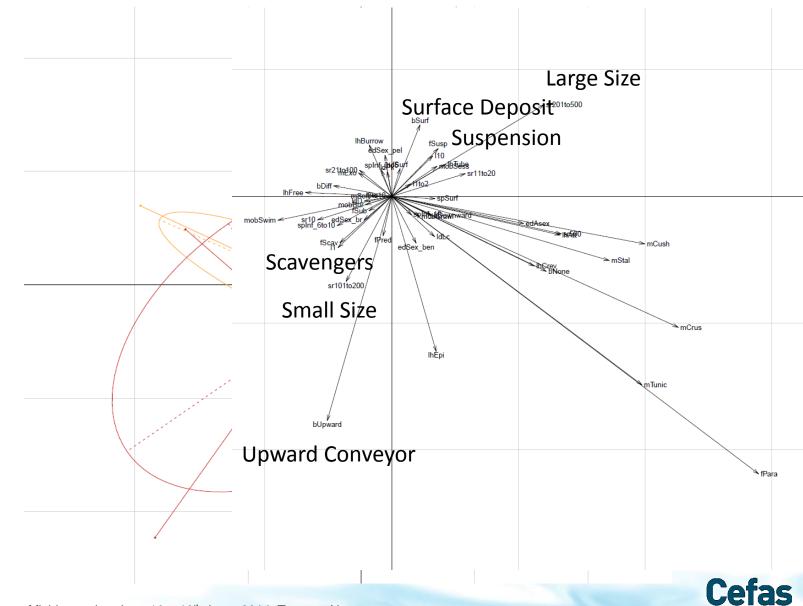
Fishing Pressure




Trait/Station Matrices


Cefas

Habitat Specific Analysis



Habitat Specific Samples

A5.13 Infralittoral Coarse Sediment

Changes in trait composition attributed to fishing pressure (green traits are winners, red traits losers)

	Bioturbation	Egg devel.	Feeding mode	Larval devel.	Living habit	Longevity	Max. size	Mobility	Morphology	Sediment Pos.
A5.13	Upward conv	Direct dev Benthic eggs	Surface deposit Suspension Predators Scavengers	Planktonic	Tube- dwelling Free-living	<1yr	200-500mm <10mm 10-20mm	Sessile	Tunic Stalked	x
A5.14	Х	х	х	X	х	X	X	Sessile Crawlers	X	х
<mark>A5.15</mark>	Downward conv Upward conv	Х	x	Planktonic	Tube- dwellers Crevice	X	X	X	X	Х
A5.23	X	Direct devel	Surface deposit Suspension Predators Scavengers	lecithotrophic	X	x	x	Swimmers	Stalked	X
A5.24	Х	х	x	Planktonic Direct	х	X	X	Swimmers	Stalked	Surface- dweller
A5.25	Х	х	х	Lecithotrophic Direct dev	х	х	X	х	X	х
A5.26	Х	х	х	Х	Free living	х	Х	Х	X	Surface- dweller
A5.27	Х	Х	х	Х	Attached Free-living	х	Х	Swimmers	X	Х
<mark>A5.35</mark>	Upward conv Non- bioturbator	Х	Scavengers	X	Epifaunal Attached	<1yr	X	Sessile Swimmers	Stalked Crustose	Surface- dweller 0-5cm 6-10cm
<mark>A5.37</mark>	x	Х	х	X	Attached	<1yr 3-10yr	10-20mm	Sessile Crawlers	Cushioned Stalked Crustose Tunic	0-5cm
<mark>A5.43</mark>	Downward conv Upward conv	Х	x	Х	Attached	3-10yr <1yr	Х	х	X	Х

Conclusions

- 1. Generally observe with increasing fishing pressure an increase in scavengers, predators, free living swimmers, short lived and smaller sized animals, but.....
- 2. Not all habitats appear to respond the same way, e.g. the size of animals is most affected when fishing occurs in coarse sediment.
- An overall decline in the proportion of suspension and surface deposit feeders and size of animals is likely to have implications for the functioning of marine ecosystems.

Refinements!

- 1. Define more realistic habitat categories based upon observed environmental data.
- 2. Assess impact of different gear types in swept area fishing pressure calculations.
- 3. Conduct further statistical tests to rule out differences due to sample bias (e.g. spatial/temporal variation).
- 4. Integrate these findings with data on epifauna.
- 5. Better understand the functional implication of these findings in relation to recycling of nutrients and carbon, and trophic interactions in the benthic food-web.

Thank you

Lafs.